集成电路设计与工程系

史卫民

姓名:史卫民;职位:副教授;政治面貌:中共党员。

电话:18215513449

Email: wmshi@cqu.edu.cn

个人简介

2019年于电子科技大学电子学院获工学博士学位,博士期间获得唯捷创芯奖学金、华为专项奖学金等,并获得四川省优秀毕业研究生。博士毕业后赴香港科技大学担任博士后研究员,师从C. Patrick Yue教授(IEEE Fellow),从事CMOS毫米波收发前端关键技术研究,并成功获得香港特别行政区政府创新科技署‘博士专才库’资助计划。目前已发表SCI检索论文超过50余篇,主持参与多项国家级、省部级科研项目。

招生信息

硕士专业:信息与通信工程(081000,学术硕士)

实验室研究方向主要包括:5G/6G移动通信核心算法及DSP/FPGA实现技术、 新一代无线通信宽带高效线性发射机技术、无线通信中的功率放大器设计及MMIC射频集成理论研究、 高速卫星通信电路与系统设计方法研究、“碳中和”新能源系统中的功率电子电路及芯片设计。实验室与美国、加拿大、欧洲、澳洲、香港等国家和地区的高校保持着良好的学术交流与合作关系,与国内多家企业、研究院所保持着长期的合作交流关系,可推荐优秀员工前往深造或进行学术交流。欢迎态度认真、对科研感兴趣的同学通过邮件或电话进行联系,进入实验室共同开展科研工作。

教育工作背景          

2021.07 — 副教授,十大网投平台信誉排行榜,公司

2019.08 — 2021.07 博士后研究员,电子与计算机工程系,香港科技大学

2015.09 — 2019.06  博士  电路与系统专业,电子科学与工程学院,电子科技大学

2013.09 — 2015.06  硕士  电子与通信工程专业,电子工程学院,电子科技大学

个人荣誉

2019 香港特别行政区政府创新科技署‘博士专才库’资助计划, 编号:PiH/318/19

2019 四川省优秀毕业研究生

2018 国际微波会议(IMS)员工设计竞赛高效率功率放大器设计组全球冠军 (美国费城)

2017 IEICE Electronics Express年度最佳论文奖

项目经历

1. 国家自然科学基金项目(青年基金项目)“数字辅助多模重构的宽带双输出功率放大器研究”,项目编号:62201100,时间:2023/01-2025/12,(主持)

2. 中国博士后科学基金项目(面上项目)“频段连续模式离散的超宽带双输入功率放大器研究”,项目编号:2022M710506, 时间:2022/03-2023/12,(主持)

3. 重庆市自然科学基金项目(面上项目)“频段连续模式离散的超宽带双输入单片集成功放研究”,时间:2022/08-2025/07,(主持)

4. 中央高校基本科研业务费项目国防专项“超宽带高效星载功放芯片设计理论与方法研究”,项目编号:2022CDJJMRH-010,时间:2022/05-2024/04,(主持)

5. 香港特别行政区政府创新科技署创新及科技基金项目 “Research on Fiber-Millimeter Wave Network Chips for Indoor High-Speed Communication”, 项目编号:GHP/004/18SZ (参与)

6. 国家自然科学基金项目“基于时频技术的高效率宽带功率放大器研究”,项目编号为:61271036 (参与)

社会兼职

Ø IEEE Member93937558

Ø 国际会议分会主席:The 2nd International Conference on Frontiers of Electronics, Information and Computation Technologies, International Conference on 6G Communication and Internet of Things Technology.

Ø IEEE Transactions on Industrial Electronics, IEEE Transactions on Microwave Theory and Techniques, IEEE Transactions on Circuits and Systems I: Regular Papers, IEEE Transactions on Circuits and Systems II: Express Briefs等国际权威期刊审稿人

代表论文

1. W. Shi*, X. Li, C. Hu, et al., "Divisional Load-Modulated Balanced Amplifier With Extended Dynamic Power Range," IEEE Transactions on Microwave Theory and Techniques, Early Access, 2023.

2. C. Hu, R. Yang, W. Shi*, et al., "Analysis and Design of Broadband Outphasing Power Amplifier Based on Complex Combining Impedance," IEEE Transactions on Circuits and Systems I: Regular Papers, Early Access, 2023.

3. Y. Yao, W. Shi*, J. Pang, Z. Dai and M. Li, "Design of a Dual-Input Doherty Power Amplifier With Selectable Output Port," in IEEE Transactions on Circuits and Systems II: Express Briefs, Early Access, 2023.

4. C. Hu, W. Shi*, R. Yang, et al., "Design of an Outphasing Power Amplifier Using Complex Combining Method for Broadband Application," IEEE Microwave and Wireless Technology Letters, Early Access, 2023

5. Y. Yao, W. Shi*, C. Huang, Z. Dai, J. Pang and M. Li, "Design of a dual-input dual-output power amplifier with flexible power allocation,” IEEE Microwave and Wireless Technology Letters, vol. 33, no. 2, pp. 177-180, Feb. 2023.

6. W. Shi*, C. Hu, C. Xu, et al., "Digitally Dual-Input Dual-Output Power Amplifier With Reconfigurable Modes," China Communications, Early Access, 2022.

7. xxx, W. Shi*, xxx, et al., "An Integrated System Evaluation Engine for Cross-Domain Simulation and Design Optimization of a Transceiver Front-End Dealing With Complex OFDM Signals,"  China Communications, Early Access, 2022.

8. W. Shi* et al., "Design and analysis of continuous-mode Doherty power amplifier with second harmonic control," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 7, pp. 2247-2251, Jul. 2021.

9. W. Shi*, S. He, J. Peng, J. Wang, “Digitally dual-input Doherty configuration for ultra-wideband application,” IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7509-7518, Sep. 2020.

10. W. Shi*, S. He, X. Zhu, et al., “Broadband continuous-mode Doherty power amplifiers with non-infinity peaking impedance,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 2, pp. 1034-1046, Feb. 2018.

11. W. Shi*, S. He, F. You, et al., “The influence of the output impedances of peaking power amplifier on broadband Doherty amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 8, pp. 3002-3013, Aug. 2017.

12. W. Shi*, S. He and Q. Li, “A series of inverse continuous modes for designing broadband power amplifiers,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 7, pp. 525-527, Jul. 2016.

13. W. Shi*, S. He, Q. Li, T Qi, and Q. Liu, “Design of broadband power amplifiers based on resistive-reactive series of continuous modes,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 7, pp. 519-521, Jul. 2016.

14. D. Gan, W. Shi*, M. F. Haider and G. Naah, “Design of continuous mode Doherty power amplifiers using generalized output combiner,” International Journal of Electronics and Communications, vol. 116, pp. 15309, Mar. 2020.

15. W. Shi*, S. He and G. Naah, “Extending the power range of symmetrical Doherty power amplifier by taking advantage of peaking stage,” IET Microwaves, Antennas & Propagation, vol. 11, no. 9, pp. 1296-1302, 2017.

16. W. Shi et al., "An Integrated System Evaluation Engine for Cross-Domain Simulation and Design Optimization of High-Speed 5G Millimeter-Wave Wireless SoCs," IEEE 14th International Conference on ASIC (ASICON), 2021, pp. 1-4. Invited Paper